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Abstract-An exact stiffness formalism is presented to study harmonic and transient wave propa­
gation in multilayered dry, saturated and unsaturated isotropic poroelastic media. Smeulders'
extension of Biot's poroelastic theory is used to incorporate unsaturated porous media with a small
gas fraction. A wide range of problems in geophysical and civil engineering can be treated, ranging
from amplification ofplane harmonic waves, dispersion and attenuation of surface waves to transient
wave propagation due to a forced excitation. The effect of full or partial saturation on wave
propagation in a poroelastic layered halfspace is demonstrated in a numerical example, in which
the layering is caused by a moving ground water table. © 1998 Elsevier Science. All rights reserved.

1. INTRODUCTION

Many materials encountered in civil, geophysical and biomechanical engineering can be
considered as porous media consisting of an assemblage of solid particles and a pore space.
The pore space may be filled with air (dry medium), a fluid (saturated medium) or both
(unsaturated medium).

The study of wave propagation in layered media has received considerable attention,
especially in the context ofexploration geophysics, seismology and engineering. The restric­
tion to linear problems defined on horizontally layered media allows the use of integral
transforms and the formulation of a layer and halfspace stiffness matrix that can be used
in an exact stiffness formalism (Kausel and Roesset, 1981). In spite of the aforementioned
restrictions, this formalism allows for the solution of various important problems such as
site amplification of plane harmonic waves, dispersion and attenuation of surface waves
and harmonic and transient wave propagation due to a forced excitation.

Whereas the original contributions have been formulated within the frame of classical
elastodynamics, treating the medium as a monophasic continuum, the importance of the
interaction between the pore fluid and the solid skeleton is now general1y recognized. The
dynamic behaviour of saturated porous media is described by Bioes poroelastic equations
(Biot, 1956). Using this theory, Deresiewicz (1962) and Jones (1961) have studied the
propagation of free surface waves in a saturated poroelastic halfspace while Paul (1976a;
b) and Philippacopoulos (1988a) have considered transient waves. Philippacopoulos
(1988b) has been the first to study the case of a "partially" saturated poroelastic halfspace
where a dry layer is on top of a saturated halfspace, representing the case of a moving water
table.

By analogy with the monophasic elements, Degrande (1992) and Degrande and De
Roeck (1992, 1993) have formulated the dynamic saturated layer and halfspace stiffness
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matrices. These matrices can be used together with their dry counterpart in an exact
stiffness formalism to model harmonic and transient wave propagation in dry and saturated
poroelastic media. Similar work has recently been reported by Rajapakse and Senjuntichai
(1995), who succeeded in deriving analytical expressions for the elements of the dynamic
stiffness matrices of the saturated poroelastic layer and halfspace element, thus allowing a
more efficient implementation in a computer program.

Whereas the mathematical formulation ofwave propagation in saturated porous media
has been quite successful, it should be emphasized that in practice, the presence of small
amounts of gas is not unlikely at all, as porous media will hardly ever be fully liquid­
saturated. One might envisage small gas remnants in oil saturated geological strata, or air
bubbles trapped in marine sediments. Based on shock tube experiments, Smeulders (1992)
has clearly demonstrated how small amounts of gas in the pores of a saturated porous
medium affect the one-dimensional wave propagation characteristics. He has also confirmed
theoretically his experimental findings by a modification of Biot's poroelastic theory.

The question now arises how a small amount of air bubbles affects wave propagation
in two- or three-dimensional poroelastic media. Therefore, the topics covered in this paper
are as follows. Firstly, the equations governing the dynamic response of dry, saturated
and unsaturated isotropic poroelastic media will be briefly reviewed. Secondly, it will be
demonstrated how an exact stiffness formulation for wave propagation in isotropic dry and
saturated layered poroelastic media can be modified to incorporate Smeulders' modification
of Biot's poroelastic theory to account for the presence of a small amount of air bubbles.
Thirdly, we will demonstrate by means of a numerical example how full and partial
saturation influences harmonic and transient wave propagation in an axisymmetric por­
oelastic layered halfspace, where the layering is due to a water table at a depth H below the
free surface.

2. GOVERNING EQUAnONS FOR ISOTROPIC MEDIA

A porous medium consists of a solid skeleton and a pore space that may be filled with
air, a fluid or both. The pore space is connected, enabling the filtration of the pore fluid
through the porous medium. The solid skeleton consists of the solid matrix and the empty
connected pore space.

In the following, the equations that describe the propagation of waves in isotropic dry,
saturated and unsaturated media will be briefly reviewed. We have intentionally restricted
the formulation to the isotropic case in order to reduce the mathematical complexity. A
full anisotropic version of the formalism would be useful, however, for the study of wave
propagation in layered sediments that often appear to be anisotropic.

2.1. Dry parae/astic medium
The dynamic behaviour of a dry porous medium or single phase medium can be

described within the frame of classical continuum mechanics. The displacement vector in
the solid skeleton is denoted by u'. The small strain tensor 8

S in the solid skeleton is equal
to the symmetric part of the solid skeleton displacement gradient as :

(1)

The equilibrium equation of the dry porous medium is:

(2)

(J is the stress tensor, pSb is the body force vector and pS = ps(1-n) is the density of the
solid skeleton, with Ps the density of the solid grains and n the porosity. A superimposed
dot on a variable denotes differentiation with respect to time. We assume that convective
terms can be discarded.

The constitutive equations for an isotropic linear elastic material are:
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(3)

with jJ-s and).' the Lame coefficients and Dlj the Kronecker delta. In the following derivations
in the frequency domain, it will be implicitly assumed that the Lame coefficients are complex
numbers by application of the correspondence principle, i.e. multiplication of jJ-s and A' +2jJ-s

by (l + 2if3~) and (l + 2if3~), respectively. Here, i = J=l is the imaginary unit and f3~ and
f3~ are the hysteretic material damping ratios for rotational and dilatational deformation,
respectively.

2.2. Saturated poroetastic medium
In a saturated porous medium, the connected pore space is entirely filled with a fluid.

The small strain dynamic behaviour of a saturated porous medium can be described with
Biot's poroelastic theory (Biot, 1956).

The displacement vectors in both phases of a saturated porous medium are denoted
by u' where-x = s for the solid skeleton and ct. = ffor the pore fluid. The fluid flow relative
to the solid skeleton measured in terms of volume per unit area of the bulk medium is equal
to w = n(o!-US). The relation (1) is supplemented with the following expression for the
volume of fluid' which escapes from the pores of a unit volume of bulk material:

(4)

The global equilibrium equation of the saturated porous medium is :

(5)

Here, (1 is the total stress tensor, pb is the body force vector, p = Ptn+Ps(l-n) is the
mixture density and PI is the density of the pore fluid. The motion of the pore fluid with
respect to the solid skeleton can be described by the generalized Darcy's law (Biot, 1956;
Coussy, 1995) as:

"s PjGlj.. 1 .
-P+Prb = Pfu+ -w+ -~w

.1 ,I I n J n2 I) )
(6)

where p is the pore fluid pressure. The symmetric tensor alj accounts for the tortuosity of
the pores and reduces to ablj in the isotropic case. The viscous interaction between the pore
fluid and the solid skeleton is represented by a symmetric positive definite second order
tensor 1;. In the frequency domain, this tensor will be written as I;(w) = F(w)l;o' F(w) is
a complex frequency dependent viscosity correction factor that describes the transition
behaviour from viscosity dominated flow in the low frequency regime towards inertia
dominated flow at high frequencies (Auriault et at., 1985; Johnson et at., 1987; Smeulders,
1992; Smeulders et at., 1992). The tensor 1;0 is related to the Darcy permeability tensor ko
by 1;0 = n2yf koLand to the specific permeability tensor klO by 1;0 = n2IJdk;o I. Herein, iirand
IJd are the specific weight and dynamic viscosity of the pore fluid. For an isotropic poroelastic
medium, the tensors ~Olj, k Olj and k IOij reduce to ~obij' kobij and k/Ob ij, respectively.

Finally, the isotropic poroelastic constitutive equations read:

with the Biot coefficients ct. and M defined as:

Kd 1 n ct.-n
1X=1--' -=-+--.

Ks ' M Kr K s

(7)

(8)

Kd , Ks and Kr are the bulk moduli of the drained solid skeleton, the solid matrix, and the
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pore fluid, respectively. The Biot coefficients are subject to the thermodynamical restrictions
M ;:;, 0 and n ~ IX ~ 1.

2.3. Unsaturated poroelastic medium
In an unsaturated porous medium, the connected pore space is filled with a liquid and

a gas phase. We follow Smeulders (1992) assuming that the gas fraction in the pores is
small so that the gas bubbles can be considered as part of the pore fluid. Consequently, the
dynamic behaviour of an unsaturated porous medium with a small gas fraction can be
described by Biot's two-phase theory for saturated porous media if the influence of the gas
phase on the compressibility of the fluid phase is accounted for. The bulk modulus Kr of
the "generalized" pore fluid is: .

(9)

where 9 denotes the pore gas fraction. K, is the liquid bulk modulus and Kg the effective
bulk modulus of the gas phase, which relates the averaged bubble volume Vg to a change
in liquid pressure p~ far away from the bubble:

1 aVg

Kg - Vg ap~'
(10)

Gas bubbles in liquid can vibrate and have a fundamental resonance frequency. Moreover,
several damping mechanisms result in a phase shift between a change in the gas bubble
volume and the fluid pressure far away from the gas bubble. In the frequency domain, this
can be described by a complex effective bulk modulus Kg of the gas phase. We assume that
the shape of the gas bubbles is spherical, that in the case of small gas fractions the medium
outside the bubble can be considered as saturated, and that, since the bubble motion is
considerably larger than the motion of the solid skeleton, the solid skeleton is rigid. This
yields the following expression for the effective bulk modulus Kg of the gas phase (Smeulders,
1992) :

(11 )

with W the angular frequency, We a characteristic frequency defined as 1],11/p!clOa (Biot,
1956; Smeulders, 1992), Ro the bubble radius, np the complex polytropic constant, PgO the

gas bubble pressure, (J the surface tension, kre = .J7r/CrJw2
- iwweF the effective wave­

number, corresponding to the propagation of the second Biot wave in the limiting case of
a stiff frame, and Cr the speed of sound in the fluid. Zero subscribed quantities refer to a
fixed reference equilibrium state. The effective bulk modulus of the gas phase is a complex
frequency dependent number. Energy dissipation due to Darcy flow, acoustic, thermal and
viscous damping is incorporated and has been discussed in much detail by Smeulders (1992)
and Smeulders et at. (1992). Thermal coupling is due to heat exchange between the vibrating
gas bubbles and the surrounding porous matrix, while acoustic damping originates from
the oscillating gas bubbles emitting spherical sound waves into the surrounding pore fluid.
Darcy flow and viscous damping mechanisms evolve from fluid-grain interactions and fluid
velocity gradients, respectively.

2.4. Displacement equations ofmotion
From the previous discussion it follows that the dynamic behaviour of saturated and

unsaturated poroelastic media may be described by means of Biot's poroelastic theory. In
the unsaturated case, proper account should be made of the influence of a small amount of
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gas on the compressibility of the liquid-gas mixture that saturates the pores. U sing the
poroelastic constitutive eqns (7) and the linearized strain-displacement relations (1) and
(4), the equilibrium eqns (5) and (6) can be written in terms of the displacement vectors u'
and w as:

Il'V' Vu' + (A' +11' +a2 M)VV' US +(XMVV 'w+pb = pus + PtW,

aMVV'u' +MVV 'w+pfb = PIU' + Pia W+ ~w. (12)
n n2

2.5. In-plane and out-oj-plane motion
In a Cartesian coordinate system with unit vectors e" ey and ez, the displacement

vectors u' and wand decomposed in terms of the scalar wave potentials <I>', 'fI' and X'
(Atkin, 1968; Eringen and Suhubi, 1975) as:

US = V<Ils+ V x 'fIsey+ V x tezo

w = V<IJf+ V x 'fIfey + V x 'Jfez • (13)

This specific form of the Helmholtz decomposition has been chosen to decouple immediately
the in-plane motions in the (x, z)-plane from the out-of-plane motions in the y-direction,
with x the horizontal axis parallel to the free surface, z the vertical axis normal to the free
surface and y the horizontal axis normal to the (x, z)-plane. After substitution of the
decomposition (13) in the displacement equations of motion (12), the following set of
uncoupled hyperbolic partial differential equations (PDE) is obtained:

(14)

The first two equations describe in-plane motion in terms of the scalar wave potentials <Il'
(P or longitudinal waves) and 'fI' (SV or vertically polarized shear wave), while the third
describes out-of-plane motion as a function of the scalar potentials X' (SH or horizontally
polarized shear wave). The following discussion will be restricted to the propagation of in­
plane P and SV waves. The dilatational and rotational stiffness matrix are defined as:

K = [AS +21l
s + (X2 M aMJ.

P aM M '

and the mass and damping matrix are equal to :

= [Ill OJK, ,. ° ° (15)

(16)

The elastodynamical behaviour of a medium can also be represented in cylindrical
coordinates (r, z, e) where rand eare the radial and circumferential coordinate, respectively.
This form of the equations is useful for example for applications involving a borehole.
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3. DISPERSION RELATIONS

3.1. Dilatational waves
The in-plane propagation of dilatational (P) waves in porous media is described by

the first linear hyperbolic PDE in eqn (14). A Fourier transformation of the time t to the
frequency W is followed by a Fourier transformation of the horizontal coordinate x to the
horizontal wavenumber k n as it is assumed that the geometry is invariant in the horizontal
x-direction. This results in the following system of linear coupled ordinary differential
equations (ODE) in the wavenumber-frequency domain:

(17)

Here, a tilde above a variable denotes its representation in the wavenumber-frequency
domain. As the only independent variable in the ODE (17) is the vertical coordinate z, the
following analytical solutions can be proposed for the wave potentials:

(18)

where kzp is the vertical component of the dilatational wave propagation vector kp(kn k zp).
The eigenvector components P' depend on the boundary and initial conditions of the
problem. Setting the solutions (18) in the ODE (17) leads to:

(19)

where k~ +k;p = k;, with kp the complex magnitude of the dilatational wave propagation
vector kp . Non-trivial solutions for the eigenvector components pa can be found if the
determinant of the coefficient matrix ofeqn (19) is zero. After some algebraic manipulations,
the dispersion relation can be written alternatively as (Bowen and Reinicke, 1978; Garg et
al., 1974):

• 2

[k2 C 2 2][k2C2 2] IW [k2C2 2] 0p pl-W p p2- W +~ p po-W =,
X

(20)

where the dimensionless frequency X is defined as the ratio of the frequency w to a
characteristic frequency Wo, defined as Wo = tr(M-1E), assuming that the viscosity cor­
rection factor F = 1. Wo is inversely proportional to the permeability ko. Biot (1956) and
Smeulders (1992) use a slightly different characteristic frequency W n as introduced before.
In eqn (20), Cpo is the P-wave velocity in the low frequency limit, while Cp1 and Cp2 are the
P-wave velocities in the non-dissipative porous solid. The dispersion relation (20) enables
the calculation of the complex wavenumber kp in function of the frequency w. The dila­
tational dispersion relation is biquadratic, which reveals the existence of two P-waves (PI
and P2) in a saturated poroelastic medium (Biot, 1956). They will be referred to by a
subscript} = 1,2 in the following. The waves are dispersive and attenuated and involve a
coupled motion between the solid skeleton and the pore fluid. The propagation velocities
are defined as Cjp = w/Re(kjp) and the attenuation coefficients as qjp = Im(kjp). The relative
motion between both phases is described by means of complex frequency dependent
coefficients cOjp, so that P~ = cOjpPj, that follow immediately from eqns (19) as:
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(21)

Alternatively, modified coefficients cOlp = 1+cOjpln that relate the absolute pore fluid dis­
placement to the solid skeleton displacement will be used in the following.

The vertical wavenumbers kzjp of both dilatational waves can be calculated for each k x

and w from the relation k;+k'tp = kj~: kzjp equals ±(k]p-k;)05 if kx ~ kjp, which cor­
responds to propagating waves in the z-direction. On the other hand, if kx > kjp, k ziP equals
=+= i(k; -kJp)05 and represents inhomogeneous waves with exponential decrease or increase
in amplitude with z. Using the upper sign in both expressions for k zjp, the solution (18) can
be written more generally as:

2

c$'(kx , z, w) = I P,/exp( -ikzjpz)+PjR exp( +ikzjpz),
J~ I

(22)

where the superscripts I and R refer to the incident (outgoing) waves, propagating in the
positive z-direction, and the reflected (incoming) waves, propagating in the negative z­
direction, respectively.

3.2. Shear wave
As the pore fluid does not sustain shear stress, the presence of a small amount of air

bubbles in the pores of an unsaturated porous medium does not affect the characteristics
of the shear (S) wave. Nevertheless, the following discussion recapitulates the terminology
that will be needed further on.

The in-plane propagation of an S-wave in porous media is described by the second of
the PDE (14). Application of a forward Fourier transformation on t and x transforms this
PDE in the following ODE:

(23)

The following analytical solutions can be proposed for the wave potentials as a function of
the independent coordinate z :

'P"(koz,w) = S'exp(-ikzsz). (24)

kzs is the vertical component of the shear wave propagation vector ks(k" k zs)' Introduction
of the solutions (24) in the ODE (23) leads to:

(25)

where k; +k;s = k;, with ks the complex magnitude of the shear wave propagation vector.
Non-trivial solutions for the eigenvector components S' can be found if the determinant of
the coefficient matrix of eqn (25) is equal to zero. The dispersion relation can finally be
written as:

(26)

where Cso and Cs1 are the shear wave velocities in the low frequency limit and in the non­
dissipative porous solid, respectively. The shear dispersion relation is bilinear and reveals
the existence of a single shear wave in a saturated poroelastic medium (Biot, 1956), that is
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dispersive and attenuated and involves a coupled motion between the solid skeleton and the
pore fluid. The wave propagation velocity is defined as Cs = w/Re(k,) and the attenuation
coefficient as qs = Im(k,). The relative motion between both phases is described by means
of a complex frequency dependent coefficient co,,, defined as Sf = cosS'. This coefficient
follows immediately from eqn (25) as:

_W2pjll2
COs = - ---'--"----

- w2Pfan +iw~
(27)

Alternatively, a modified coefficient co; = 1+co,ln that relates the absolute pore fluid
displacement to the solid skeleton displacement will be used in the following.

Following a similar argument as in the case ofP-waves, the solution (24) can be written
more generally as:

(28)

4. EXACT STIFFNESS FORMULATION

4.1. Variables in the wavenumber-frequency domain
The motion of the pore fluid can be written in terms of the motion of the solid skeleton

by means of the complex coefficients cOfp and COS' The eigenvector components related to
the solid skeleton ii = {SSI P';I p~ ssR p~R pnT then will be treated as the linearly
independent set of variables. The vector ii can be split into two subvectors
iii = {SSI pY P1.} T and iiR = {ssR p;R psn T for the outgoing and incoming wave
amplitudes, respectively.

The transformed displacements ii = {a~ a~ Wx wz } T can be written in terms of the
kernels iii and iiR as:

(29)

where the diagonal submatrices Z/ and Z/ of the matrix Z describe the dependency of the
solution on the vertical coordinate Z as follows:

ZI = diag {exp( - ikzJ exp( - ikz1pz) exp( - ikz2pz)} ,

ZR = diag {exp(+ ikzs ) exp( + ikz1pz) exp(+ ikz2pz)}. (30)

The submatrices iV and BR of the matrix B depend on the excitation frequency w, the
horizontal wavenumber k" the vertical wavenumbers k zs and kzfP and the coefficients co,
and cOjp as:

[ +ik
o -ik, -ikx

B/ =
-ik - ikz1P - ik", ]

+i~zs;O, -ikxco 1p - ikxco2P ,

-tkxco, -ikzpCOlp - ikz2pC02p

-ikz< -ikx -ik,

BR = [ -&
+ ikz1P + ik", ]

-i~z,;O, - ikxcOlp - ikxco2P
(31)

-lkxco, + ikzlpCOIP + ikz2pC02p

The four displacement components in the vector ii are linearly dependent on the kernels iii



Wave propagation in layered poroelastic media 4761

or iiR
. Thus, a reduced set of linearly independent transformed displacements

Or = {a:: ia~ iwz } T will be used in the following:

(32)

The transformation matrix T u selects the appropriate elements from the transformed dis­
placement vector 0; in order to obtain symmetric coefficient matrices in the following
derivations, the vertical displacement components are multiplied by the imaginary unit i.
The latter is not necessary when Fourier cosine and sine or Hankel transformations are
used. Submatrices offi = T)i are defined as fi/ = TuB f and fiR = TuB R

.

The two-dimensional transformed strains il = {~x if Y::z 0 T, with Y::z the "engin-
eering shear strain", are equal to:

(33)

Here, the submatrices C/ and CR of the matrix Care:

[ +k,k"
-k;

-k; ]
C/=

-k,kzs -k;IP -k;2P

-k; +k;s -2kxk z1p -2~xkz2P ,

0 -kipcOlp -k2pc0 2P

[ -k,k"
-k~

-k; ]

CR =
+kxkzs -k;lp -k;2p

-k~+k;, +2kxk z1P +2~xkz2P

0 -kipcOlp -k2pC0 2p

(34)

The transformed modified strain vector il, = {ie ii?::z y~z iO T is introduced as:

[~
0

;1
0

il = Tp.il = T"CZii = EZii.il = (35)r
0 I

0 0

The transformation matrix Tp' replaces the horizontal strain ~x in the solid skeleton by the
volumetric strain e and multiplies some variables with the imaginary unit. Submatrices of
E = Tp.C are defined as Ef = Tp'C/ and ER = TeCR.

The transformed stresses it = {o-n 0-zz o-xz - p} T are related to the transformed
strains it by :

it = Kil.

The matrix K of poroelastic coefficients reads:

(36)
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r),'+2~'H'M AS +a2M 0 aM

AS +a2M }." +2Il+a2 M 0 aM
K= (37)

0 0 11:' 0

aM aM 0 M

Since the pore fluid cannot sustain any shear stress, only three stress components have to
be specified at any boundary perpendicular to the z-axis. Therefore, the transformed reduced
stress vector ii, = {(j" i(jzz - ijJ} T is defined as :

(38)

where the transformation matrix T" selects the appropriate elements from the transformed
stress vector ii and multiplies some variables with the imaginary unit. It is easy to dem­
onstrate that the transformed reduced stresses ii, are related to the transformed modified
strains 8, by a reduced matrix of constitutive coefficients K, = T"KTF.- I .

4.2. Saturated layer element
For a saturated layer element the transformed variables are expressed in terms of the

incident as well as the reflected kernels. The displacements ue at both interfaces of a layer
element (Fig. I) are:

{fi~} {fi,(Z = O)} [jYZ/(z = 0)
fie = fi~ = fi,(z = L) = jYZI(Z = L)

(39)

where the submatrices ZI(Z = 0) and ZR(Z = 0) reduce to the 3 x 3 identity matrix.
The element tractions t e at both interfaces of a layer element can be written in terms

of the transformed reduced stresses by application of Cauchy's stress principle at the
horizontal interfaces z = 0 and z = L. There, the unit outward normal vector is directed in
the negative and positive z-directions, respectively. Using the relations introduced in the
previous subsection, the tractions at both interfaces of the layer element are:

!Tz1' T~,

1 x ----;===i.~T.~)(~, ,.----r----r !. U~,
z u~"wz,

L

2

! · U~2

U~,WZ2

Fig. I. Saturated layer element.
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[

- KrE1Z1(z = 0)

= + KrErZI(z = L)
(40)

Elimination of the wave amplitudes from eqns (39) and (40) allows the element dis­
placements iieto be related to the element tractions fe as:

(41)

or, in blockwise notation:

(42)

The matrix Ke is the 6 x 6 complex stiffness matrix of the saturated layer element. As Ke is
symmetric, K21 = Kl~' Moreover, a symmetry argument can be used to demonstrate that
the elements of the submatrix K22 follow immediately from the elements of Kit. As a result,
only the elements of the submatrices Kl1 andKl2 have to be determined explicitly.

It is not advisable to calculate the layer stiffness matrix as the product of the coefficient
matrix in eqn (40) and the inverse of the coefficient matrix in eqn (39). Due to the presence
of the submatrices ZI(Z = L) and ZR(Z = L), the latter is severely ill-conditioned for large
values of kxL, which would result in very poor computational results. Instead, by matrix
algebra it is easy to obtain the following expressions for the submatrices Kl1 and Kl2 in
terms of submatrices introduced earlier:

K11 = - [KrE1- KrERZlfiR~ I fiIZI][fiI _ fiRZlfiR-l fiIZI] ~ 1,

Kl2 = [KrE1_KrERfiR-lfiI]zr[fiI _l)RZlfiR-lfiIZI]-I. (43)

Here, it is understood that the submatrix ZI is evaluated at z = L. For kx = 0, corresponding
to the one-dimensional case, the horizontal and vertical motions or the contributions to
the shear and dilatational motion decouple. Expressions (43) are stable for large values of
kx • The submatrix Kl1 tends to - KrE1fiI-l, the expression of the element stiffness matrix
of the halfspace, as will be derived in the next subsection. Furthermore, the submatrix
Kl2 tends to zero for large k" since Zr tends to zero. This confirms that, as k x increases, the
uncoupling of the modes shifts towards an uncoupling of the interfaces.

Although the expressions (43) allow drawing some conclusions for limiting values of
kD their straightforward numerical evaluation is still not advisable, as some of the sub­
matrices are singular for zero frequency (static case) and/or horizontal (one-dimensional
case) and vertical wavenumber. In view of numerical accuracy and computational efficiency,
it is therefore very useful to derive analytical expressions for the elements of the layer
stiffness matrix, as well as limiting expressions for zero wand k x . Whereas analytical
expressions and corresponding limiting expressions for the elements of the dry layer element
stiffness matrix are available since two decades (Kausel and Roesset, 1981), the complexity
of the equations has compromised the derivation of the corresponding expressions in the
(un)saturated case. Only very recently, Rajapakse and Senjuntichai (1995) have been
successful in deriving analytical expressions for the elements of Ke through symbolic
manipulation with Mathematica (Wolfram, 1991). However, these authors did not derive
limiting expressions for vanishing wand/or k x which are recommended for a stable numeri­
cal implementation.
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I Tzt,T~t

1 X ~t~=~.~~Tx~t=- 7.-------r- I • u:,
z tU;t.Wzt

Fig. 2. Saturated halfspace element.

4.3. Saturated halfspace element
The saturated halfspace element models the propagation of waves in a semi-infinite

halfspace. The amplitudes of the harmonic waves should be non-increasing functions of
the distance travelled in the direction of wave propagation. Therefore, only the outgoing
waves will be considered. The displacements iie at the single interface of a halfspace element
can be calculated by evaluation of eqn (32) at z = 0 as:

iie = iir(z = 0) = iYz/(z = O)ii/. (44)

The element traction 1'e can be written in terms of the transformed reduced stresses by
application of Cauchy's stress principle on the horizontal interface z = 0 with an outward
unit normal vector in the direction of the negative z-axis. Using the relations introduced
previously, the tractions at the single interface of the halfspace element are:

1'e = -&,(z = 0) = -KrF:.'Z/(Z = O)ii/. (45)

In both eqns (44) and (45), the matrix Z/(Z = 0) is equal to the 3 x 3 identity matrix. The
element tractions t e are related to the element displacements iie after elimination of the
outgoing wave amplitudes iiI from eqns (44) and (45):

(46)

where the 3 x 3 complex symmetrical element stiffness matrix j(e of the saturated halfspace
element is equal to :

j(e = _ KrE/fi/-l . (47)

Analytical expressions for the elements of the stiffness matrix j(e can be derived through
symbolic manipulation of expression (47) with Mathematica (Wolfram, 1991). Limiting
expressions for vanishing frequency (static case) and/or horizontal wavenumber (one­
dimensional case) are readily available.

4.4. Assembly ofequations
For each frequency wand horizontal wavenumber k" the element stiffness matrices

j(e are calculated as explained above and assembled in a global stiffness matrix j(s relating
the tractions 1's and the displacements iis :
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(48)

The assembly process establishes the equilibrium at each horizontal interface, assuming the
continuity in pairs of (Jxz and u~, (Jzz and u;, and p and W z (Bourbie et al., 1987; Deresiewicz
and Skalak, 1963). The complex stiffness matrix j(s is symmetrical and banded. Since the
frequency and wavenumber dependent eigenvectors are used as shape functions for the
formulation of the element stiffness matrices j(e, the mass distribution is treated exactly
without the need of subdividing a member into smaller elements. Wave propagation within
an element is treated exactly and elements can extend from one interface to another.

This gives a substantial reduction in the size of the system represented by eqn (48)
compared as to a thin layer formulation (Bougacha et al., 1993). In this method, for the
discretization in the vertical direction, polynomial shape functions are used instead of
solutions of the wave equations. Consequently, the layer thickness should be small enough
with respect to the smallest wavelength in the response. Moreover, the thin layer method
was originally formulated for a layered stratum on rigid bedrock. Wave propagation in a
semi-infinite layered halfspace could be treated as a hybrid formulation, by combining a
thin layer formulation for the layers with an exact halfspace element, as derived in the
foregoing subsection.

4.5. Possible applications

4.5.1. Free-jield response. In a first application, the free-field response ofa multilayered
medium due to an incident plane wave (a PI, P2 or SV wave) with an angle of incidence qJ

at a frequency w is considered. This procedure can be used to calculate the free field
response of a site due to an incident seismic wave in a dynamic soil-structure interaction
problem. Another possible application is the determination of the acoustical impedance of
isotropic multilayered porous materials.

When an incident wave impinges on a layered medium, the displacements fie of the
interface with the underlying halfspace not only depend on the outgoing wave amplitudes
a', but also on the imposed incident waves aR = aine as :

(49)

It is understood here that i/(z = 0) and 7./(z = 0) are equal to the 3 x 3 unit matrix.
Similarly, the element tractions can be written as:

(50)

Elimination of the unknown a' from eqns (49) and (50) gives rise to the following element
equilibrium equation of the halfspace element:

(51 )

where the second term on the right hand side accounts for the incident wave. This equation
is assembled in the global equilibrium eqn (48). A unit vector aine represents an incident
wave of a particular type and unit amplitude. A specific choice of the angle of incidence qJ

and the excitation frequency w determines the (complex) horizontal wavenumber, resulting
in a one-dimensional amplification problem to be solved.

4.5.2. Surface waves. A second application involves the calculation of the natural
modes of vibration or free surface waves in a multilayered dry, saturated or unsaturated
halfspace. The natural modes of vibration are equal to the displacements fis when the load
vector fS equals zero in eqn (48). Non-trivial solutions for fis can be obtained if the
coefficient matrix j(s is singular or if the determinant of j(s is equal to zero:
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detKS = O. (52)

This equation corresponds to a transcendental eigenvalue problem in terms of the real
frequency ill and the complex horizontal wavenumber k n which imaginary part represents
wave attenuation in the horizontal direction. This eigenvalue problem has an infinite
number of solutions and must be solved by search techniques. We have used Powell's
hybrid method (Draelants, 1994), based on an algorithm that combines the advantages of
the Levenberg-Marquardt approach and update techniques, improving the convergence of
the search algorithm and reducing the computational cost.

The present formulation can be considered as a generalization of more classical work
where surface waves in a dry halfspace (Rayleigh, 1887), a dry layer on a halfspace
(Achenbach and Epstein, 1967), a dry multilayered halfspace (Haskell, 1953), a saturated
halfspace (Deresiewicz, 1962; Jones, 1961) and a "partially" saturated halfspace (Phi­
Iippacopoulos, 1987) have been considered.

The advantage of using, alternatively, a thin layer method is that a quadratic rather
than a transcendental eigenvalue problem is obtained. The method is restricted however to
the calculation of normal wave modes in a layered stratum on a rigid bedrock (Bougacha
et al., 1993). If a hybrid formulation is used where thin layers are combined with a halfspace
element, the eigenvalue problem is transcendental again.

4.5.3. Forced vibrations. A third application involves the calculation of the response
of a layered halfspace to an external transient loading. At each interface between layers,
the displacements or tractions can be prescribed. The traction can be represented by a
function T(x, t) = S(x)F(t) where Sex) and F(t) denote the spatial and temporal variation
of the loading, respectively.

The function F(t) is transformed to the frequency domain by means of a Fast Fourier
Transform (FFT) algorithm. The spatial distribution of the loading Sex) is limited to some
special functions (e.g. Dirac impulse, uniform distribution, normal distribution) of which
the spectral content in the horizontal wavenumber domain can be evaluated analytically
(Bateman, 1954).

The inverse integral transformations from the wavenumber to the spatial domain are
of the general form S~f(k" z, w) cos(krx) dk, or SO" f(k" z, w) sin(k,x) dk, for the in-plane
case and S~of(knz,w)k,Jn(krr)dkr for the axisymmetric case, with n the order of the Bessel
function. The following characteristics of the integrand are important:

-The function f(kX' z, w) follows from the solution of the system of eqns (48). Although
the relative increase in computation time due to an increase in the number of layers is
not particularly large (Xu and Mal, 1987), its evaluation is expensive.

-The functionf(k" z, w) exhibits dense oscillations, which are due to exponential terms in
the diagonal submatrices Z/ and Z,R for particular values of k,. The presence of very low
speed layers is likely to cause rapid oscillations in some parts of the integrand, which are
irregular as their exact location and nature cannot be predicted (Xu and Mal, 1987).

-In the absence of material dissipation, the function f(k" z, w) becomes zero for certain
values of k" which correspond to the surface wave poles of the integrand. The number
of poles is almost proportional to the frequency and the total thickness of the layers
above the halfspace. Several techniques to remove the poles from the path of integration
have been reported in literature (Apsel and Luco, 1983; Bouchon and Aki, 1977; Kundu
and Mal, 1985; Luco and Apsel, 1983). We have added material damping as this method
of pole removal corresponds to a physical reality.

-The kernel functions in the integral transforms introduce rapid oscillations for large
values of the horizontal source-receiver distance.

In view of the foregoing remarks, an efficient quadrature scheme is needed for the evaluation
of the inverse wavenumber integrals. According to Xu and Mal (1985) an adaptive algo­
rithm with self-adjusting interval, concentrating abscissas around regions of sharp vari­
ations in f(k" z, w) and taking full advantage of previously computed values of the inte­
grand, is most useful in order to obtain an accurate evaluation of the wavenumber integral
with a minimum number of function evaluations.
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Different quadrature formula can be obtained depending on the method used to
estimate the derivatives of the expanded function. Apsel and Luco (1983) have used
Lagrange's five point formula, representing the integrand locally with a quartic polynomial
for variable step size. They use a hybrid quadrature scheme, in a sense that, depending on
the magnitude of the arguments of the Bessel functions, a non-Filon method or a Filon
method is used. We have followed Fraser and Gettrust (1984) and used a generalized Filon
method which makes use of an asymptotic expansion in a way that does not depend on the
accuracy of the expansion (Van den Broeck et al., 1993). Alternative quadrature schemes
have been investigated by Kundu and Mal (1985) and Xu and Mal (1987) but have not
been used in the present implementation.

The inverse transformation from the frequency to the time is performed by an inverse
FFT algorithm.

5. NUMERICAL EXAMPLE

In the following numerical example, we will study the effect of a moving water table
on the propagation of transient waves in an isotropic axisymmetric halfspace. Furthermore,
the influence of a small amount of air bubbles in the pores of the saturated medium will be
illustrated. The halfspace consists of sand of Mol, whose dynamic material characteristics
are summarized in a first subsection. The dispersion and attenuation characteristics of the
dilatational and shear waves are illustrated next. Subsequently, wave propagation in an
axisymmetric layered halfspace is studied in the wavenumber-frequency domain as well as
the space-time domain.

5.1. Material characteristics
The (un)saturated material under consideration is a sand of Mol, composed of sub­

angular quartz particles with a mean grain diameter dso = 0.195 mm. The connected pore
space is saturated with water. The physical characteristics of sand of Mol have been
summarized by Van Impe (1981), while its dynamic material characteristics have been
studied at low (Yoon, 1992) and high (Van Impe, 1981 ; Thooft, 1992) deformation ratios.
The porosity n equals 0.388. The sand grain density equals Ps = 2650 kg/m3 and the pore
fluid density is equal to PI = 1000 kg/m 3

• The resulting mixture density equals P = 2009.8
kg/m3

•

The solid skeleton has a Young modulus E' = 2.983 X 108 N/m2 and a Poisson
coefficient V

S = 1/3. The corresponding Lame coefficients are }.' = 2.236 X 108 N/m2 and
p' = 1.1186 X 108 N/m2

. The bulk modulus of the pore fluid is K, = 2.2 X 109 N/m2
. Accord­

ing to the classical soil mechanics' assumption, the Biot coefficient CI. = 1.0.
In the (un)saturated case, the Darcy permeability is taken to be k = 1.0 x 10-4 m/s.

Accounting for the dynamic viscosity IJd = 1.002 X 10-3 Ns/m2 and the density of the
pore fluid, the specific permeability k[ = IJdk/iw = 10.214 x 10- 12 m2

• Due to the lack of
experimental data, we have taken the tortuosity factor a = 1.789, in agreement with Berry­
man's relation a=(I+n)/2n (Bourbie et al., 1987). Moreover, a frequency-dependent
correction factor F(w) is used to account for the dynamic permeability, following Johnson
et al. (1987).

In the unsaturated case, the presence of 0.1 % of air bubbles with radius Ro = 0.5 mm
will be assumed. The density of the air is Pg = 1.205 kg/m3

, the gas bubble pressure in
the equilibrium state is pqO = 1.0 X 105 N/m2

, the thermal diffusivity of the gas phase is
ag = 1.87 x 10- 5 m2/s, the specific heat ratio is y = 1.4 and the surface tension is (J = 0.07
N/m.

5.2. Dispersion relations for isotropic materials

5.2.1. Dry poroelastic material. In the dry poroelastic material, the dilatational and
shear wave are non-dispersive and unattenuated in the absence of material damping. The
wave propagation velocities are equal to Cp = J (AS +2p')/P' = 525.2 m/s and

C = Jp'/p' = 262.6m/s, respectively. The ratio of C, and Cp will be denoted as s. This
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ratio is equal to J (I - 2vS )/(2 - 2vS
) and only depends on Poisson's ratio v'. As v' is equal

to 1/3, s is equal to 0.5.

5.2.2. Saturated poroelastic material. In this example, the characteristic (angular)
frequency Wo, governing the transition from low to high frequency behaviour, is equal to
23,850 rad/s. Figure 3 shows the phase velocities Cjp (j = 1,2), the attenuation coefficients
%p and the modulus and phase of the complex coefficients cojp of the PI-wave and P2-wave
in the saturated medium as a function of X. Similar variables for the S-wave are shown in
Fig. 4.

For limiting low values of X, the relative motion between both phases vanishes due to
the high viscous coupling. This is reflected by the real and unit value of the coefficients
CO'lp and co:. The saturated porous medium behaves as an equivalent undrained monophasic
medium with a density equal to the mixture density and a low compressibility. The latter is
due to the presence of pore water and reflected by a high value of the P-wave velocity
Cpo = 1745 m/s. The S-wave velocity is only weakly affected as it is only influenced by the
change in density. It tends to the low frequency limit Co = 235.9 m/s. In the low frequency
limit, the ratio So of C,o and Cpo equals 0.135 and the corresponding undrained Poisson's
ratio equals Vo = 0.49. The attenuation coefficients qlp and qs tend to zero. The P2-wave is
diffusive.

For intermediate values of X, all waves are dispersive and attenuated. The absolute
solid and fluid displacements are in phase in the PI-wave and out of phase in the P2-wave.
Consequently, q2p is larger than qlp for all frequencies.

For limiting high values of X, the medium behaves as a non-dissipative poroelastic
medium as the viscous coupling between both phases disappears and elastic as well as
inertial coupling dominate the dispersion characteristics. The wave velocities Cjp of both
dilatational waves tend to the high-frequency limits Cp1 = 1824 mls and Cp2 = 303.7 m/s.
The shear wave velocity also reaches its high frequency limit C.d = 249.78 m/s. The latter
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Fig. 4. (a) Phase velocity C" (b) attenuation coefficient q" (c) modulus, and (d) phase of the
coefficient co; of the S-wave in a saturated poroelastic medium as a function of the dimensionless

frequency X.

is smaller than the shear wave velocity in the drained solid skeleton due to the tortuosity
of the pores.

5.2.3. Unsaturated poroelastic material. Considering next the unsaturated poroelastic
material, it will first be demonstrated how a small amount of gas bubbles of initial radius
Ro and characterized by the gas fraction g, affects the pore fluid compressibility. Figure 5
shows the modulus and phase of the dimensionless fluid bulk modulus KJ/ K, as a function
of the dimensionless frequency Xfor an unsaturated poroelastic medium with a gas fraction
g = 0.001 and bubble radii of 0.25, 0.5 and 1.0 mm.

For low values of X, Kr is only affected by the steady state compressibility of the gas
bubbles as Kg tends to nppgo -~(o"/ Ro) (Smeulders, 1992) and the dynamic bubble behaviour
is of minor importance. For high values of X, the pore fluid acts as if there were no gas
bubbles at all; Kg tends to infinity and Kf = Kd(l-g). For intermediate values ofX however,
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Fig. 5. (a) Modulus and (b) phase of the dimensionless fluid bulk modulus KjfK, in an unsaturated
poroelastic medium with gas fraction 9 = 0.001 and bubble radii Ro = 0.25 mm, Ro = 0.5 mm and

Ro = 1.0 mm as a function of the dimensionless frequency X.
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the dynamic bubble behaviour is important. First, Kr reaches a mmlmum. This high
compressibility originates from a resonance phenomenon where the gas bubble volume
changes in phase with the applied fluid pressure. The resonance frequency is inversely
proportional to the bubble radius Ro (Smeulders, 1992). At a higher frequency, an opposite
phenomenon can be observed, i.e., the gas bubble volume increases when the pore fluid
pressure is increased, resulting in an out of phase behaviour and an increase of Kr.

Because of the observed gas bubble resonance phenomenon, it is convenient to intro­
duce in the unsaturated case a second dimensionless frequency Wh defined as the ratio of
the excitation frequency wand the gas bubble resonance frequency Wh' Both dimensionless
frequencies Xand Wh are related by X = WhXh, where Xh is equal to the ratio of the gas bubble
resonance frequency Wh and the characteristic frequency Woo A parametric study should
account for a wide range of values for Xh' Here, however, only one bubble radius (Ra = 0.5
mm) is considered for which Wh = 25,887 rad/s and Xh = 1.085.

Figure 3 compares, as a function of X, the phase velocities Cjp (j = 1,2), the attenuation
coefficients qjp and the modulus and phase of the complex coefficients coip of the PI-wave
and P2-wave in a saturated and unsaturated poroelastic medium with gas fractiong = 0.001
and bubble radius Ra = 0.5 mm. The steady state compressibility of the gas bubbles is
responsible for the decrease of both Cjp at low X. The attenuation coefficients qjp in both
waves increase. For higher frequencies, resonance and anti-resonance phenomena of the
vibrating gas bubbles become important. C lp decreases at the resonance frequency and
tends to Cp2 of the saturated poroelastic medium for high X. Clp suddenly increases in the
frequency range between the resonance and anti-resonance frequency of the gas bubbles,
reaches a maximum at the latter frequency and tends to Cpl of the saturated poroelastic
medium for high X. q2p reaches a maximum at the resonance frequency of the gas bubbles.
In the high frequency regime, the roles of both P-waves change, as the phase velocity and
attenuation coefficient of the PI-wave tend to the corresponding values of the P2-wave of
the non-dissipative poroelastic medium and vice versa.

5.3. Results in the wavenumber-frequency domain
In order to illustrate the effect of a moving water table and the presence of air bubbles

on wave propagation in an axisymmetric halfspace consisting of sand of Mol, the following
six cases with increasing degree of saturation are considered: (a) a dry halfspace (D); (b)
a dry layer with thickness H on an unsaturated halfspace (D-US); (c) a dry layer with
thickness H on a saturated halfspace (D-S); (d) an unsaturated halfspace (US); (e) an
unsaturated layer with thickness H on a saturated halfspace (US-S); and (t) a saturated
halfspace (S).

Each halfspace is subjected to a unit vertical traction Te(r, z = 0, t) = l5(r)c5(t) at the
free surface, where 15(-) denotes the Dirac delta function. This function has a unit spectral
content in the wavenumber and frequency domain so that the solution is not influenced by
the spatial and temporal distribution of the loading. Halfspace and layer elements are used
in an exact stiffness formulation to solve the governing wave equations in the wavenumber­
frequency domain with generalized coordinates (kn z, w). The z-axis is pointing downwards.

For the calculations in the wavenumber-frequency domain, we have used a low value
/3~ = /3; = 0.001 for the material damping ratios. This low value is not related to the material
damping that is actually observed in real soils. It rather has a mathematical meaning in a
sense that it removes the surface wave pole(s) from the real horizontal wavenumber axis
(ApseI and Luco, 1983; Kundu and Mal, 1985). At the same time, it is low enough to
reduce the influence of material damping on the computational results at high frequencies.
In real soils however, material damping is higher. A typical value for /3: and /3; in sandy
soils is equal to 0.02, as revealed by in situ experiments such as a down-hole survey
(Kokusho, 1987). This realistic value will be used for the subsequent calculations in the
space-time domain.

For the six cases considered, Fig. 6 shows the modulus of the vertical solid skeleton
displacement a~(kn z = 0, w) at the free surface as a function of the dimensionless horizontal
wavenumber kr and the dimensionless frequency X. The dimensionless horizontal wave­
number kr is defined as krCjw = CjC where C, is the shear wave velocity of the drained
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porous medium and C is the phase velocity. Both the x-axis and the vertical axis are on a
logarithmic scale. Xvaries between 0.01 and 100.0. The k,-axis is linear and k, varies between
oand 2.

In the following subsections, general observations will be made regarding the response
in the wavenumber-frequency domain for the six cases. Further conclusions will be drawn
when results in the space-time domain are presented for a specific frequency content of the
loading.

5.3.1. Dry hal/space. The response of a dry halfspace does not depend on the dimen­
sionless frequency Xthat has been defined in the context of saturated media. The overall
frequency dependence of the response is restricted to a decreasing response for increasing
frequency due to material damping. As the amount of material damping is small (0.1 %),
this effect will only be important at high frequencies.

For k, = 0, corresponding to the one-dimensional case, the phase velocity C is infinite
and the P- and S-wave are uncoupled and propagate in the z-direction (Fig. 6(a)). For
k, > 0, the phase velocity C is finite and the free surface condition couples the P- and S­
wave, that are both propagative in rand z. The P-wave becomes inhomogeneous with
exponential decay in the z-direction for k, ~ s(C ~ Cp), where the ratio s equals 0.5 in this
example. A similar remark can be made for the S-wave if k, ~ I(C ~ C,). For k, ~ 1.07, a
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peak according to the nondispersive Rayleigh (R-) wave appears (Raleigh, 1887). Due to
the introduction of a small amount of material damping, the Rayleigh wave pole has
been moved away from the real wavenumber axis and the response remains finite at all
frequencies.

5.3.2. Saturated hal/space. It is instructive to discuss the case of the saturated halfspace
before layering or air bubbles are introduced. The dispersive character of the PI-wave and
the R-wave in a saturated poroelastic medium can be observed from Fig. 6(f).

For low X, the saturated medium behaves as an undrained monophasic mixture. This
explains the high velocity of the PI-wave, as mentioned before. The PI-wave becomes
inhomogeneous in z if kr is larger than C,jCpo . As the ratio C,o/Cpo of the low frequency
body wave velocities is equal to 0.135 and the ratio C,/C,o is equal to 1.113, a corresponding
dip in the displacement modulus can be observed at kr = 0.15. The P2-wave is diffusive.
The S-wave velocity is only weakly affected as it is only influenced by the change in density.
The secular equation that governs the surface wave behaviour in a saturated poroelastic
medium follows immediately from the solution of a transcendental eigenvalue problem
(52), where the stiffness matrix j{s reduces to the saturated halfspace element stiffness
matrix. This has been studied in much detail by Deresiewicz (1962) and Jones (1961). For
low X, the solution of the secular equation is kr = (krCso/w)( C,/C\·o) = 1.048 x 1.113 = 1.166.
The surface wave velocity in the saturated poroelastic halfspace is lower than in the dry
halfspace due to the high value of the mixture density. The lower compressibility results in
smaller displacements.

For limiting high X, the medium behaves as a non-dissipative poroelastic solid. The S­
wave and R-wave are only affected by the tortuosity of the pores. The elastic as well as
inertial coupling result in considerable influence on P-wave propagation.

For intermediate X, dispersion and attenuation of all waves affect the vertical dis­
placement at the surface.

5.3.3. Unsaturated hal/space. When compared to the saturated case, the presence of
air bubbles in an unsaturated halfspace only slightly influences the R-wave propagation
(Fig. 6(d)) , as the R-wave velocity is mainly influenced by the shear modulus and the
density. The S-wave propagation is not affected by the presence of air bubbles. However,
considerable influence of a small amount of air bubbles on P-wave propagation can be
observed. For low X, the P-wave velocity is much lower than in the saturated case due to
the high compressibility of the air bubbles and is only slightly higher than in the dry case.
For high X, the presence of air bubbles is of minor importance and the response tends to the
response of the saturated halfspace. For intermediate X, however, the transition behaviour in
the vicinity of the resonance and anti-resonance frequency of the air bubbles can clearly be
observed.

5.3.4. Dry layer on a saturated halfspace. Next, we consider the case of a dry layer on
a saturated halfspace (Fig. 6(c)). This problem clarifies the influence of a moving ground
water table due to seasonal variations or temporal changes as they may be caused by an
artificial lowering of the ground water table during construction works. This case has also
been studied by Philippacopoulos (1987; 1988b).

Besides the dimensionless frequencies Xand Wb introduced in the context of saturated
and unsaturated media, it is convenient to introduce here a third dimensionless frequency
wem defined as the ratio of the excitation frequency wand the first cut-off frequency W eo of
the dry layer built in at its base. The latter is equal to 2nCs/4H for horizontal motion and
2nCp/4H for vertical motion, with H the depth of ground water table. At these resonance
frequencies, the height of the layer equals the quarter wavelength. As the loading is vertical,
we will use the vertical resonance frequency in the following. Both dimensionless frequencies
X and w'" are related by X = wcoX"" where Xeo is equal to the ratio of the first cut-off
frequency W eo of the layer built in at its base and the characteristic frequency Woo A
parametric study should account for a wide range of values for XCO' In the present example,
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however, only one value for the depth of the water table (H = 0.25 m) has been considered.
The corresponding vertical cut-off frequency equals W eo = 3302 rad/s and Xeo = 0.1384.

The presence ofa ground water table at a depth Hbelow the free surface results in a high
contrast in compressibility between the dry layer and the underlying saturated halfspace due
to the low compressibility of the pore fluid. The influence of the layering introduced by the
ground water table depends on the dimensionless frequency Wen, or Xwhen Xeo is fixed. For
limiting low and high values of X, the medium behaves like a saturated (Fig. 6( f)) or a dry
(Fig. 6(a)) halfspace, respectively. The first surface wave is dispersive and its phase velocity
varies from the R-wave velocity in a saturated halfspace to that of a dry halfspace for
increasing X. At weo = 1,3, ... , higher surface modes appear. For weo larger than one, the
solution becomes oscillatory for low values of kr .

5.3.5. Dry layer on an unsaturated halfspace. The response of a dry layer on an
unsaturated halfspace depends on the dimensionless frequencies X, WeD and Wb as introduced
before. In this example, the permeability (k = 0.0001 m/s), the depth of the ground water
table (H = 0.25 m) and the gas bubble radius (R = 0.5 mm) are fixed. The corresponding
values of the characteristic frequency Wo, the cut-off frequency Wen of the layer built in at
its base and the gas bubble resonance frequency Wb are fixed so that only the effect of the
excitation frequency W will be visible in the numerical results.

Figure 6(b) demonstrates that the presence of an unsaturated halfspace with a small
amount of air bubbles in the pores at a depth H below the free surface introduces layering
of which the influence depends on the dimensionless frequency Wen, or Xwhen XeD is fixed.
For limiting low and high values of X, the medium behaves as an unsaturated (Fig. 6(d))
or a dry (Fig. 6(a)) halfspace. The first surface wave is dispersive and its phase velocity
varies between the R-wave velocity in an unsaturated halfspace and that of a dry halfspace.
The R-wave has almost the same characteristics as in the case of a dry layer on a saturated
halfspace. When compared to the case of a dry layer on a saturated halfspace (Fig. 6(c)),
however, the propagation ofP-waves is largely influenced by the presence of a small amount
of air bubbles in the underlying halfspace, due to the high compressibility of the air bubbles
at low frequencies and the resonance and anti-resonance behaviour of air bubbles at
intermediate frequencies.

5.3.6. Unsaturated layer on a saturated halfspace. As can be observed from Fig. 6(e),
the presence of a small amount of air bubbles in the top layer of a saturated halfspace
considerably affects the propagation of P-waves. The response tends to the response of a
saturated halfspace (Fig. 6( f)) in the low frequency range and the response of an unsatu­
rated halfspace (Fig. 6(d)) in the high frequency range.

5.4. Results in the time domain
Next, the transient response of the six cases is calculated due to an impulsive point

force T=(r, z = 0, t) = 6(r)R(t) at the free surface. R(t) is a Ricker wavelet defined as
R(t) =(272 -I)exp(-72

) where 7= n(t-tJ/Td is a dimensionless time, Td the dominant
period, and ts a shift in time. In this example, these parameters are equal to Td = 2.5 ms
and t, = 5.0 ms. Figure 7 shows the time history and frequency content of this Ricker
wavelet. The spectral content has been calculated with an FFT algorithm with period
T = 0.064 s and time step !'1t = 0.25 ms and reveals a dominant frequency at 400 Hz.

The inverse integral transformations from k r to r are evaluated numerically by means
of an adaptive generalized Filon method (Frazer and Gettrust, 1984). The behaviour of the
part f(k" z, w) of the integrand is well described in function of the dimensionless wave
number kr • A target value of the dimensionless quadrature step I1kr is specified. A particular
value of I1kr defines an increasing spatial window length L for decreasing frequency w.
However, the choice of the quadrature step is not governed by a requested absolute and/or
relative accuracy over the whole integration interval in the present implementation. Instead,
I1kr is allowed to decrease or increase with a factor of 16, depending on an integration
error, estimated as the contribution of the fourth order term to the integral in the integration
interval under consideration. The upper bound restriction on I1kr is relaxed for kr > 1.5
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Fig. 7. (a) Time history and (b) frequency content of the Ricker wavelet with Td = 2.5 ms and
I, = 5.0 ms.

beyond which the integrand is known to be monotonic. A target value of 11k, = 0.01 was
chosen in this example. The total integration interval is truncated at kr;ax. A particular
value of kr;ax defines a decreasing spatial resolution for increasing frequency w. In this
example, the integration is continued up to kr;ax = 320.0, a value based on experience rather
than on a criterium based on requested accuracy.

Figure 8 shows the time history of the vertical displacement u~(r, z = 0, t) in the solid
skeleton at the free surface at different distances r = ro +(i - 1)11r from the source with
ro = 2.5 m, 11r = 0.25 m and i = 1, ... ,11 for the six cases considered. Note that 2% of
material damping in dilatational and rotational deformation has been introduced, a realistic
value for material attenuation in sandy soil. Figure 8(a) shows the time histories in the dry
halfspace. These results will be treated as a reference and are repeated as dashed lines on
the other figures. The observations that can be made in the space-time domain follow
immediately from earlier observations in the wavenumber-frequency domain. Therefore, it
is interesting to consider Fig. 6 simultaneously. The center frequency of the loading is
equal to 400 Hz, which corresponds to a dimensionless frequency X= 0.105. A complete
parametric study should include a wide range of input wavelets with different dominant
frequency.

5.4.1. Dry halfspace. In the dry halfspace, the arrival of the P-wave and the R-wave,
with a much higher amplitude, can clearly be observed (Fig. 8(a». The S-wave arrives just
before the R-wave. The amplitudes of these waves are attenuated by material damping and
geometrical spreading. As the latter is much higher for body waves at the surface than for
surface waves, the R-wave dominates the response in the far field.

5.4.2. Dry layer on an unsaturated halfspace. The water table is raised next up to a
depth H below the free surface while the underlying halfspace is unsaturated. Due to the
high compressibility of the air bubbles in the pores of the unsaturated halfspace, the P­
wave velocity in the unsaturated halfspace is only slightly larger than in the dry layer. The
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resulting contrast in P-wave velocity is small and P-wave propagation is only weakly
affected (Fig. 8(b)). Some dispersion can be observed.

In the frequency range of interest, the R-wave is dispersive. The phase velocity of the
first surface mode varies between the R-wave velocity of an unsaturated halfspace and a
dry halfspace. Therefore, low frequency components travel with a lower velocity than
components at higher frequencies. The amplitudes of the R-wave components are smaller
than in the dry halfspace, due to the slightly lower compressibility of the underlying
unsaturated material and the larger attenuation.

5.4.3. Dry layer on a saturated halfspace. When the halfspace below the dry layer is
fully saturated, the low compressibility of the pore fluid results in a high contrast between
the compressibility of the layer and the underlying halfspace. In the frequency range of
interest, this gives rise to wave refraction and resonance phenomena at the first vertical
eigenfrequency of the layer built in at its base, which is clearly observable from the P-wave
arrivals in Fig. 8(c).
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The R-wave is dispersive and the phase velocity of the first surface mode varies between
the R-wave velocity of a saturated halfspace and a dry halfspace. The former is almost the
same as the R-wave velocity in the unsaturated halfspace, as it is mainly influenced by the
shear modulus of the drained solid skeleton and the mixture density, characteristics which
are unaffected by the presence of a small amount of air bubbles. When compared to the
previous case of the dry layer on an unsaturated halfspace (Fig. 8(b)), the low com­
pressibility of the underlying halfspace does not considerably affect the displacement ampli­
tudes at the free surface. When compared to the dry halfspace however, lower amplitudes
can be observed since the compressibility of the unsaturated material is still lower than the
compressibility of the dry material.

5.4.4. Unsaturated halfspace. The ground water table is subsequently raised up to the
level of the free surface. The halfspace in unsaturated. In the frequency range of interest,
the propagation of the PI-wave is affected by the high compressibility of the air bubbles
(Fig. 8(d)). The PI-wave velocity is slightly higher than the P-wave velocity in the dry
material. As the frequency content of the loading is well beyond the resonance and anti­
resonance frequency of the air bubbles, these phenomena are not important here.

The R-wave propagation is influenced throughout the whole frequency range, resulting
in a slower R-wave with a lower amplitude than in the dry case. As the compressibility is
higher than in the saturated case, the amplitude is larger than in the saturated case (Fig.
8( f)).

5.4.5. Unsaturated layer on a saturated halfspace. The unsaturated halfspace is fully
saturated up to a depth H below the free surface. The propagation of P-waves is strongly
affected. Due to the presence of a small amount of air bubbles in the top layer, a contrast
in compressibility is introduced between the unsaturated layer and the underlying saturated
halfspace, resulting in resonance phenomena at the first vertical resonance frequency of the
unsaturated layer built in at its base (Fig. 8(e)). This result demonstrates that partial
saturation of the top layer of a saturated halfspace may have important effects on P-wave
propagation.

The R-wave velocity is weakly dispersive and the R-wave velocity varies from the R­
wave velocity in a saturated halfspace to the R-wave velocity in an unsaturated halfspace.
The influence of the compressibility on the R-wave velocity is small however, whereas the
influence on the displacement amplitudes is higher. Due to the higher compressibility of
the top layer, the resulting amplitudes are higher than in the saturated halfspace (Fig. 8( f)),
but lower than in an unsaturated halfspace (Fig. 8(d)).

5.4.6. Saturated halfspace. When the halfspace is fully saturated, a fast PI-wave and
a slower dispersive R-wave can be observed (Fig. 8( f)). Due to the low compressibility of
the material, the resulting displacement amplitudes are lower than in the dry halfspace.

6. CONCLUSION

An exact stiffness formulation has been presented to study harmonic and transient
wave propagation in multilayered dry, saturated and unsaturated isotropic poroelastic
media. The description of wave propagation and attenuation in unsaturated porous media
incorporates the dynamic gas bubble behaviour. The unsaturated case is restricted to small
amounts of gas in the pores of the saturated medium so that Smeulders' extension of Biot's
poroelastic theory can be used. Consequently, an exact stiffness formulation for saturated
porous media can be simply modified to incorporate the unsaturated case.

The versatility of the method has been demonstrated by a numerical example where
the effect of partial saturation and a moving water table on harmonic and transient wave
propagation in an axisymmetric layered halfspace has been treated. The response of the
media is discussed in terms of three dimensionless frequencies X, Wh and weo , defined as the
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ratio of the excitation frequency W to the characteristic frequency wo, the resonance fre­
quency Wb of the air bubble (unsaturated case), and the cut-off frequency We" of the top
layer (water table below the free surface), respectively.

The effect of an increasing degree of saturation of a halfspace on the propagation of
harmonic waves could clearly be illustrated in the wavenumber-frequency domain, despite
our limitation to one particular value of the permeability k, the air bubble radius Ro, and
the depth H of the ground water table. A similar conclusion is true for results obtained in
the space-time domain after evaluation of the inverse integral transformations. These results
are also influenced by the particular spectral content of the loading in the wavenumber and
frequency domain. For the low frequency loading applied in this example, the effects of
partial saturation and a moving ground water table on R-wave propagation were noticeable
but small. P-wave propagation however is importantly influenced when a considerable
contrast in compressibility is introduced at a certain depth H below the free surface. This
is the case for a dry or unsaturated layer on a saturated halfspace. The latter means that
the presence of air bubbles in a top layer of a saturated halfspace may considerably affect
P-wave propagation.
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